
MySQL Limitations on the Flat Catalog (Product)

Problem

A table in MySQL has a . It may severely limit the number of columns in a table when it haslimitation of 65535 bytes of overall row length
varchar/char columns.

In Magento starting from 1.3 the products catalog in the "flat" mode suffers from this limitation depending on the number and combination of the
product attributes that participate in the flat product index.

Background

A product attribute gets into the flat tables and gets affected by the issue in the following conditions:

The flat product catalog is enabled in "Sys Config -> Catalog -> Frontend -> Use Flat Catalog Product"
When a product attribute is added with the following parameters:

Input Type – one of:
Text Field
Date
Yes/No (boolean)
Multiple Select
Dropdown
Price
Media Image
Fixed Product Tax

Frontend Properties – "Yes" one of: "Used in Product Listing", "Use in Layered Navigation", "Used for Sorting in Product Listing"
When the cache is refreshed and the flat catalog index is refreshed

Result:

"SQLSTATE[42000]: Syntax error or access violation: 1118 Row size too large. The maximum row
size for the used table type, not counting BLOBs, is 65535. You have to change some columns to
TEXT or BLOBs".

Estimated Limits

The limits are calculated with the assumption that the table has utf8 encoding and the columns would fill all 65535 bytes (in reality this number is
decreased by the static attribute columns).

Input Type Type in the Database Size Formula Maximum Qty

Text Field
Multiple Select
Media Image

varchar(255) (255 + 1) x 3 = 766 bytes 85

Date date 3 bytes 4096

Yes/No
Dropdown

int(11) 4 bytes 4096

Price
Fixed Product Tax

decimal(12,4) 4 + 2 = 6 bytes 4096

Solution

Workarounds

Minimize usage of the varchar (Text Field, Multiple Select) product attributes on the frontend by avoiding to put them into flat index: "Used
in Product Listing" = No, "Use in Layered Navigation" = No, "Used for Sorting in Product Listing" = No
Use "Dropdown" input type instead of "Multiple Select" (int instead of varchar)

http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.1/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.0/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.0/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.1/en/column-count-limit.html

Optimization

Requires either core code modification or a customization.

Some proposed (not verified) solutions:

Reduce the "Multiple Select" storage to varchar(128): this would allow to store up to attributes65535 / (128 * 3 + 1) = 170
Switch the "Text Field" and "Media Image" types to some blob format – not affected by the 65535 length, but performance will suffer on
searching/filtering by this attributes on the frontend
Do the above and switch the table encoding to ANSI: attributes65535 / (128 + 1) = 508
Or a completely alternative solutions:

move out the "Multiselect" or all varchar attributes to other table with various optimizations
dissolve the "Multiselect" storage into a table with int values (cardinality & implementation logic change)

